AUTOMORPHISMS OF FUNCTION FIELDS

ву MAXWELL ROSENLICHT

1. Let K be an algebraic function field of one variable over the constant field k and let g > 0 be the genus of K. Let G be the group of all automorphisms of K that leave the elements of k fixed (and that leave a given place P_0 of K/k fixed if g=1). A classical theorem due to Schwartz-Klein-Noether-Weierstrass-Poincaré-Hurwitz when g>1 (and older for g=1) says that G is finite if k is the field of complex numbers. From this one can easily deduce the same result if k is any field of characteristic zero. The theorem for kan algebraically closed field of characteristic $p\neq 0$ was proved by H. L. Schmid in 1938 [5], and a less computational proof for any algebraically closed k was given recently by Iwasawa and Tamagawa [3]. We intend to show how this result can be very easily proved by one of the classical arguments (given in essence, but somewhat imprecisely, in [1]) if we replace integration on the Riemann surface R of K by use of its jacobian variety J, and finally we shall show what the corresponding result is when k is an arbitrary field. The reasons for including here the easy case g=1 will become apparent in the last section.

The analytic proof we have in mind runs as follows: G is naturally isomorphic to the group of complex analytic homeomorphisms of R (that leave P_0 fixed if g=1). First consider the special case in which R is elliptic or hyperelliptic. R can then be considered (in one and only one way) as a two-sheeted covering surface of a Riemann sphere S (such that, if g=1, P_0 is a branch point of this covering). The elements of G give rise to analytic homeomorphisms of S that permute the ramification points of S. Since g>0, the ramification points are in finite number >2. The finiteness of G then follows from (1) any analytic homeomorphism of S leaving three distinct points fixed is the identity, and (2) any element of G that leaves all points of S fixed is either the identity or merely interchanges the sheets of R. On the other hand if K is not elliptic or hyperelliptic, then the ratios of the differentials of the first kind of K give rise to the canonical embedding of R in S_{g-1} , the complex projective space of dimension (g-1), and the automorphisms of K/k correspond one-one to projective transformations of S_{g-1} that map R onto itself. It follows that G can be considered as a Lie group with a finite number of components that acts analytically on R (see the second lemma of §2 for details), so it remains only to show that the component of the identity G of Ghas only one point. Hence we have to show that if σ_1 , $\sigma_2 \in G$ are homotopic (as maps of R), then $\sigma_1 = \sigma_2$. So let ω be any differential of the first kind on R

Presented to the Society, December 28, 1953; received by the editors January 16, 1954.

and let Γ be any 1-cycle on R. Then $\sigma_1^{-1}(\Gamma)$ is homologous to $\sigma_2^{-1}(\Gamma)$, and hence $\int_{\Gamma} \sigma_1(\omega) = \int_{\sigma_1^{-1}(\Gamma)} \omega = \int_{\sigma_2^{-1}(\Gamma)} \omega = \int_{\Gamma} \sigma_2(\omega)$. Thus all the periods of $\sigma_1(\omega) - \sigma_2(\omega)$ are zero, so $\sigma_1(\omega) = \sigma_2(\omega)$. Since this is true for each ω and since the quotients of the ω 's generate K, we have $\sigma_1 = \sigma_2$. Q.E.D.

2. In this section k is supposed algebraically closed.

LEMMA. If K/k is any algebraic function field of one variable, there exists a nonsingular algebraic curve C in a projective space S_n such that C is defined over k, its function field k(C) is k-isomorphic to K, and each birational map of C onto itself (that leaves a given place P_0 of K fixed if g=1) is induced by a nonsingular projective transformation of S_n .

We prove this lemma generally to avoid the necessity for special consideration of the hyperelliptic case, which is messy in the case of characteristic 2. We first assume g>1 and show that the tricanonical image of K will do the trick. Let W_1 , W_2 , W_3 be canonical divisors of K. Then $d(W_1W_2W_3) = 6g - 6$ > 2g - 2, so $i(W_1W_2W_3) = 0$ and the Riemann-Roch theorem gives $r(W_1W_2W_3)$ = 5g - 5. Let $f_1, \dots, f_{5g-5} \in K$ be a basis for the vector space $L(W_1W_2W_3)$ of multiples of $(W_1W_2W_3)^{-1}$. Since any two canonical divisors of K are linearly equivalent, if we started with different canonical divisors W'_1 , W'_2 , W'_3 we could replace $f_1, \dots, f_{\delta g-\delta}$ by their multiples by a certain nonzero element of K. It follows that the algebraic curve C defined over k by the homogeneous generic point $(f_1, \dots, f_{\delta g-\delta})$, which is embedded in the projective space S_{5g-6} of dimension 5g-6, is invariantly defined by K to within nonsingular projective transformations with coefficients in k of S_{5g-6} . k(C) $=k(\{f_i/f_j\}), i, j=1, \cdots, 5g-5, \text{ so } k(C)\subseteq K.$ We now show that k(C)=K.K has precisely g linearly independent differentials of the first kind, so we can find distinct places P_1, \dots, P_q of K such that $i(P_1 \dots P_q) = 0$. For each $j=1, \dots, g$, we have $i(P_1 \dots P_q P_j^{-1})=1$. Choose distinct places P', P''that are distinct from the zeros of the differentials that are multiples of the various divisors $P_1 \cdot \cdot \cdot P_g P_j^{-1}$. Then each integral divisor of degree g that divides $P_1 \cdot \cdot \cdot P_q P'$ is nonspecial, and similarly for $P_1 \cdot \cdot \cdot P_q P''$. Hence, by Riemann-Roch, there exist functions g_1 , $g_2 \in K$ whose polar divisors are $P_1 \cdot \cdot \cdot P_{\mathfrak{g}} P'$ and $P_1 \cdot \cdot \cdot P_{\mathfrak{g}} P''$ respectively. Now choose nonzero differentials of first kind ω_1 , ω_2 , ω_3 such that $P_1 \cdot \cdot \cdot P_{g-1} | (\omega_1)$, $P_g | (\omega_2)$, $P' | (\omega_3)$. Setting $W_i = (\omega_i)$, i = 1, 2, 3, we get $P_1 \cdot \cdot \cdot P_g P' \mid W_1 W_2 W_3$. Hence 1, g_1 $\in L(W_1W_2W_3)$, so $g_1\in k(C)$. Similarly $g_2\in k(C)$. For suitable $c\in k$, g_1+cg_2 has polar divisor $P_1 \cdot \cdot \cdot P_g P' P''$; since $[K:k(g_1)] = g+1$, $[K:k(g_1+g_2)] = g+2$, we get k(C) = K. Next let P_1 , P_2 be any places of K, not necessarily distinct, and choose integral canonical divisors W_1 , W_2 , W_3 prime to P_1 . Then $d(W_1W_2W_3P_1^{-1}P_2^{-1}) = 6g - 8 > 2g - 2$, so $i(W_1W_2W_3P_1^{-1}P_2^{-1}) = 0$. Thus $r(W_1W_2W_3P_1^{-1}) = r(W_1W_2W_3P_1^{-1}P_2^{-1}) + 1$, and there exists $f \in L(W_1W_2W_3)$ such that $P_1(f)_0, P_1P_2(f)_0$. Since each function in our present $L(W_1W_2W_3)$ is finite at P_1 , this implies the nonsingularity of C. Any birational map of C

onto itself that is defined over k comes from a k-automorphism of K, which can merely permute the canonical divisors of K, so this birational map comes from a nonsingular projective transformation of S_{5g-6} ; if we have a birational map of C onto itself that is not defined over k, we merely extend the constant field k to get the same result, and this finishes the case g>1. If g=1, we have $L(P_0^\nu) = \nu$ for $\nu>0$, so there exist $x,y\in K$ such that (1,x) and (1,x,y) are bases for $L(P_0^0)$ and $L(P_0^0)$ respectively. [K:k(x)]=2, [K:k(y)]=3, so K=k(x,y). If C is the curve in S_2 having as homogeneous generic point over k the point (1,x,y), then k(C)=K. The seven quantities y^2 , yx, y, x^3 , x^2 , x, $1\in L(P_0^0)$ (a space of dimension 6), so C is a cubic curve. C is nonsingular, for otherwise it would be rational. For any birational map σ of C onto itself such that $\sigma(P_0)=P_0$ each space $L(P_0^\nu)$ is invariant under σ , so $\sigma(x)=a+bx$, $\sigma(y)=c+dx+ey$, where a,\cdots , e are constants and $be\neq 0$. This ends the case g=1. If g=0, take $C=S_1$. Q.E.D.

LEMMA. If C is a nonsingular curve of genus g, there exists an algebraic group variety G which may be identified with a subgroup of finite index of the group of all birational transformations of C onto itself (that leave a given point $P_0 \subset C$ fixed if g = 1) such that the map $\Psi: G \times C \to C$ defined by $\Psi(\sigma \times P) = \sigma(P)$ is an everywhere defined rational map.

Let k be an algebraically closed field of definition for C and let C be the curve of the preceding lemma. Let Y_0, \dots, Y_n be projective coordinates of S_n . Then any birational map σ of C onto itself (which leaves P_0 fixed if g=1) is induced by a projective transformation $Y_i \rightarrow \sum_{j=0}^n c_{ij} Y_j$, where (c_{ij}) is a nonsingular matrix of order (n+1) with constant coefficients. (So $|c_{ij}| \neq 0$.) Choose the integer N so large that the forms in k[Y] of degree N which vanish on C actually define C, and let $F_1, \dots, F_m, F_{m+1}, \dots, F_M \in k[Y]$ be a basis for all forms of degree N such that the subspace spanned by F_1, \dots, F_m consists precisely of all forms of degree N vanishing on C. The matrix (c_{ij}) then gives rise to a linear transformation of the vector space with basis elements F_1, \dots, F_M ,

$$(c_{ij}): F_{\beta} \to \sum_{\alpha=1}^{M} A_{\beta\alpha}((c_{ij}))F_{\alpha} \qquad (\beta = 1, \dots, M),$$

where the $A_{\beta\alpha}$'s are forms in $k[\{c_{ij}\}]$. The conditions that (c_{ij}) map C into itself are then $A_{\beta\alpha}((c_{ij})) = 0$, $\beta = 1, \dots, m$, $\alpha = m+1, \dots, M$. Conversely, if $|c_{ij}| \neq 0$ and (c_{ij}) satisfies these last conditions it induces a birational map of C onto itself. (If g = 1, we must add the further algebraic condition $(c_{ij}): P_0 \rightarrow P_0$.) We may clearly assume that C spans S_n . Then two (c_{ij}) 's give rise to the same birational transformation of C if and only if they are proportional. Thus the birational transformations of C (which leave P_0 fixed if g = 1) may be identified with the points of an abstract algebraic variety G' (here an algebraic variety minus a subvariety) in $S_{(n+1)^2-1}$. G' is a group

under matrix multiplication, which corresponds to the composition of birational maps. We have only to take G to be the component of the identity of G'. Q.E.D.

THEOREM. Let K be an algebraic function field of one variable over the algebraically closed constant field k. If K has genus g>0, then the group G of all k-automorphisms of K (which leave a given place P_0 of K fixed if g=1) is finite.

Let C be a nonsingular projective model of K/k. Then it suffices to show that the group of birational transformations of C onto itself (or the subgroup of these leaving P_0 fixed if g=1) is finite. It suffices to show that if C, G are as in the preceding lemma, then G=e(= the identity map). If g>1, fix some point $P_0 \in C$. Let ϕ be the canonical map of C into its jacobian variety J, normalized so that $\phi(P_0)=0$ (cf. [7]). Since J is an abelian variety we can write $\phi\Psi(\sigma\times P)=\psi(\sigma)+\psi'(P)$, where ψ , ψ' are rational maps of G and C respectively into J, and where we may suppose that $\psi(e)=0$. Thus $\phi\sigma(P)=\psi(\sigma)+\psi'(P)$. Setting $\sigma=e$, we get $\psi'(P)=\phi(P)$. Setting $P=P_0$ gives $\psi(\sigma)=\phi\sigma(P_0)$. Hence

$$\phi\sigma(P) = \phi\sigma(P_0) + \phi(P).$$

If $\sigma(P_0)$ is not constant we get $\phi(C)+\phi(C)\subseteq\phi(C)$. Since $\phi(C)$ generates J, we must have $\phi(C)=J$. Since $\phi(C)$ is a curve and J has dimension g, we have a contradiction in the case g>1 unless $\sigma(P_0)=e(P_0)=P_0$; if g=1, we have $\sigma(P_0)=P_0$ by assumption. Thus $\phi\sigma(P)=\phi(P_0)+\phi(P)=\phi(P)$. Hence the divisor $\sigma(P)P^{-1}$ is principal. Since g>0, we must have $\sigma(P)=P$, so $\sigma=e$. O.E.D.

[Remark. The above argument can be modified slightly to give the following known result, which is the essence of our proof: An irreducible algebraic system of rational endomorphisms of an abelian variety consists of only one endomorphism.]

3. In this section we let K be a field of algebraic functions of one variable of genus g>0 over the arbitrary constant field k. Let G be the group of k-automorphisms of K if g>1; if g=1, let G be the group of k-automorphisms of K leaving fixed a given place P_0 of K. If G is infinite we say that K satisfies the exceptional case. We proceed to give a full account of the exceptional case.

Lemma. Let E be any field, G a group of automorphisms of E, and let F be the subfield of E consisting of all elements of E left fixed by each automorphism of G. Then E is separably generated over F.

This has content only if E has characteristic $p \neq 0$. We have to show that if we have a relation $\sum_{i=1}^{n} c_i f_i^p = 0$, where each $c_i \in F$ and each $f_i \in E$ and where not all the c_i 's are 0, then f_1, \dots, f_n are linearly dependent over F. Clearly we may take n > 1. If $\sigma_1, \dots, \sigma_n \in G$, we have $\sum_{i=1}^{n} c_i \sigma_i (f_i^p) = 0$, $j = 1, \dots, n$, so $|\sigma_j(f_j^p)|_{i,j=1,\dots,n} = 0$, and hence $|\sigma_j(f_i)|_{i,j=1,\dots,n} = 0$. Let r

be the maximal rank that $(\sigma_j(f_i))_{i,j=1,\dots,n}$ can assume for $\sigma_1,\dots,\sigma_n\in G$; then $1\leq r< n$. Reorder the f_i 's and choose $\sigma_1,\dots,\sigma_r\in G$ so that $|\sigma_j(f_i)|_{i,j=1,\dots,r}\neq 0$. Hold σ_1,\dots,σ_r fixed and let $\sigma_{r+1}\in G$ be arbitrary. Then $|\sigma_j(f_i)|_{i,j=1,\dots,r+1}=0$, so there exist $h_1,\dots,h_r\in E$ such that $\sigma_j(f_{r+1})=\sum_{i=1}^r h_i\sigma_j(f_i),\ j=1,\dots,r+1$, and h_1,\dots,h_r are unique (i.e. independent of the choice of σ_{r+1}). Thus for any $\sigma\in G$ we have $\sigma(f_{r+1})=\sum_{i=1}^r h_i\sigma(f_i)$. If $\bar{\sigma}\in G$, we have $\sigma(f_{r+1})=\bar{\sigma}\bar{\sigma}^{-1}\sigma(f_{r+1})=\bar{\sigma}\sum_{i=1}^r h_i\bar{\sigma}^{-1}\sigma(f_i)=\sum_{i=1}^r \bar{\sigma}(h_i)\sigma(f_i)$. By the unicity of h_1,\dots,h_r , we have $\bar{\sigma}(h_i)=h_i$, so each $h_i\in F$. Hence f_1,\dots,f_n are linearly dependent over F.

COROLLARY. If K is an arbitrary algebraic function field of one variable with constant field k (K possibly of genus zero) and if K possesses an infinite number of k-automorphisms, then K is separably generated over k.

For the subfield of K left element-wise fixed by each k-automorphism of K must contain k and be of infinite index under K. Hence this subfield is k itself.

Now let K/k be such that the exceptional case holds. Then K is separably generated over k. If k' is any algebraic extension of k we can define k'K, which is a function field of one variable with constant field k'. Any place of k'K lies over a unique place of K and over any place of K lies exactly one place of k'K. (By a place of K/k we mean a k-homomorphism of a valuation ring of K into a fixed algebraic closure of k.) Any automorphism $\sigma \in G$ induces a k'-automorphism of k'K, so k'K has an infinity of k'-automorphisms. Let the curve C be a projective model of K/k each point of which is simple with reference to k. Then C has only a finite number of points that are not absolutely simple, and these correspond to a finite number of distinct places P_1, \dots, P_s of K. Such places we call singular places of K; the residue class field of K at each place P_i , denoted by $k(P_i)$, must be inseparable over k (cf. [8]). Clearly the places P_1, \dots, P_s must be permuted among themselves by each $\sigma \in G$. Thus each k'-automorphism of k'K corresponding to any $\sigma \in G$ must permute the places of k'K lying over P_1, \dots, P_s . The genus of k'Kis $\leq g$, with equality if s=0 or if k' is separable over k = 4; 2, so that k'K/k'either satisfies the exceptional case or has genus zero. But the exceptional case cannot arise if the constant field is algebraically closed, so $\bar{k}K/\bar{k}$ must be rational. (\bar{k} denotes the algebraic closure of k.) Hence s>0 and K has characteristic $p \neq 0$.

LEMMA. Let K/k satisfy the exceptional case. Then there exists a place P of K and a subgroup Γ of the group of all k-automorphisms of K such that

- (1) Γ is of finite index in the group of all k-automorphisms of K.
- (2) Each $\sigma \in \Gamma$ leaves P fixed, and if $\sigma \in \Gamma$, $\sigma \neq e$, then P is the only place of K left fixed by σ .

Proof. Let k' be any algebraic extension field of k such that k'K/k' also satisfies the exceptional case. Suppose that P' is a place of k'K and Γ' a sub-

group of the group of all k'-automorphisms of k'K, such that (1) and (2) hold for k'K, P', Γ' . Then we have our theorem for K/k proved if we let P be the place of K lying below P' and let Γ consist of all $\sigma \in \Gamma'$ that come from k-automorphisms of K. Hence it suffices to prove our theorem for k'K/k', provided k'K/k' has genus >0. The genus of K drops to zero when we extend k to \bar{k} , hence when we extend k to $k^{p^{-\infty}}$, hence when we extend k to $k^{p^{-\nu}}$, for some integer ν . If we choose ν minimal and set $k' = k^{p^{-(\nu-1)}}$, then k'K/k' has genus >0, while $(k')^{1/p}K/(k')^{1/p}$ has genus zero. Hence we may assume that $k^{1/p}K/k^{1/p}$ has genus zero. If we now let k' be the part of \bar{k} that is separably over k, then k'K has the same genus as K while $(k')^{1/p}K$ is still of genus zero. Hence we may assume to begin with that $k^{1/p}K$ has genus zero and that k is separable algebraically closed. Then $k^{1/p}K/k^{1/p}\cong kK^p/k$, so the subfield kK^p of K has genus zero. Since k is separably algebraically closed, K has a place of degree one, hence so has kK^p , so kK^p is rational. Write $kK^p = k(y)$, for some $y \in K$. If x is any separating variable for K/kthen each element of K is both separable and purely inseparable over k(x, y), so K = k(x, y). $x \in k(y)$, $x \in k(y)$, so [K:k(y)] = p. Any k-automorphism σ of K induces a k-automorphism of $kK^p = k(y)$, so $\sigma(y) = (ay+b)/(cy+d)$, where a, b, c, $d \in k$ and $ad \neq bc$. Furthermore, since $K^p \subseteq k(y)$, the action of σ on ycompletely determines σ . Let P be a fixed singular place of K. Then the group H of all k-automorphisms σ of K such that $\sigma(P) = P$ is of finite index in the group of all k-automorphisms of K, so we may restrict our σ 's to H. First suppose that $P(y) = \alpha \in (k, \infty)$. Then α is inseparable over k. For each $\sigma \in H$ we have $c\alpha^2 + d\alpha = a\alpha + b$, so we must have p = 2, d = a, $b = c\alpha^2$, $\alpha^2 \in k$. Hence $\sigma(y) = (ay + c\alpha^2)/(cy + a)$. If $\sigma \in H$, $\sigma \neq e$, we have $c \neq 0$, so P is the only place of K left fixed by σ . Thus if we set $\Gamma = H$ we are done in our special case. Hence we may suppose that $P(y) \in (k, \infty)$, and hence that P(y) = 0. Then for $\sigma \in H$ we have $\sigma(y) = ay/(1+cy)$, a, $c \in k$, $a \ne 0$. P is the only place of K lying over the place (y=0) of k(y), so if e, f are the ramification index and residue class field degree respectively of P over k(y), then ef = p. If f = 1, then P is a place of degree one of K, hence nonsingular, contrary to assumption. Thus f = p, e = 1, so $v_P(y) = 1$. We now choose $x \in K$ such that $x \notin k(y)$ and $x^p = f(y) \in k[y]$, where we suppose that the degree n of the polynomial f(y)is minimal for all such x. n>0. If $\sigma \in H$, then

$$(\sigma(x))^p = f(\sigma(y)) = f\left(\frac{ay}{1+cy}\right).$$

Choose the integer i such that $(i-1)p < n \le ip$. Then i > 0 and

$$((1+cy)^i\sigma(x))^p = (1+cy)^{pi}f\left(\frac{ay}{1+cy}\right) \in k[y].$$

Now $P((1+cy)^i\sigma(x)) = P(\sigma(x)) = P(x)$, since $\sigma \in H$, so $v_P((1+cy)^i\sigma(x) - x) > 0$.

Hence the only pole of $((1+cy)^i\sigma(x)-x)/y$ is at $(y=\infty)$, and thus

$$\left(\frac{(1+cy)^{i}\sigma(x)-x}{y}\right)^{p}=\frac{(1+cy)^{pi}f(ay/(1+cy))-f(y)}{y^{p}}$$

= a polynomial in y of degree $\leq pi-p < n$. By the minimality property of n, $((1+cy)^i\sigma(x)-x)/y \in k[y]$, so we can write $(1+cy)^i\sigma(x)=x+h(y)$, with $h(y) \in k[y]$, and we deduce

$$f(y) + (h(y))^p = (1 + cy)^{ip} f\left(\frac{ay}{1 + cy}\right).$$

Differentiating,

$$f'(y) = a(1 + cy)^{ip-2} f'\left(\frac{ay}{1 + cy}\right).$$

Since K is separably generated over k, $f'(y) \neq 0$, so we write $f'(y) = y^r u(y)$, where $r \geq 0$ and $u(y) \in k[y]$, $u(0) \neq 0$. Thus

$$u(y) = a^{r+1}(1+cy)^{ip-2-r}u\left(\frac{ay}{1+cy}\right).$$

Setting y=0 gives $a^{r+1}=1$, so there are only a finite number of possibilities for a. If we let Γ consist of all $\sigma \in H$ with a=1, properties (1), (2) follow immediately. Q.E.D.

LEMMA. If K/k satisfies the exceptional case, then K has precisely one singular place P and the residue class field k(P) is purely inseparable over k. G contains a normal subgroup G such that

- (1) G/G is cyclic and of finite order prime to p.
- (2) If $\sigma \in G$, $\sigma \neq e$, then $\sigma(P) = P$ and P is the only place of K left fixed by σ .
- (3) G is commutative and each of its elements has order p. If g=1, then $P_0=P$ and G is the group of all k-automorphisms of K.

Proof. We already know that K has at least one singular place P, and at most a finite number, and that each k-automorphism of K permutes the singular places, so the preceding lemma implies the first statement. If k(P) were not purely inseparable over k we could let k' be the separable part of k(P) and then the field k'K/k' would satisfy the exceptional case and have more than one singular place. The final statement also follows from the previous lemma. Since P is the only singular place of K, for each $\sigma \in G$ we have $\sigma(P) = P$. We can write kK = k(z), where z is infinite at P. Then $\sigma(z) = az + b$, where $a, b \in k$, $a \neq 0$, and a, b completely determine σ . Let G be the kernel of the homomorphism $\sigma \rightarrow a$ of G into the multiplicative group of k. Then G consists precisely of e and of all $\sigma \in G$ such that P is the only place left fixed

by σ , verifying (2). G contains the Γ of the previous lemma, which implies (1). If $\sigma \in G$, then $\sigma(z) = z + b$, which gives (3). Q.E.D.

Now let K/k be any function field satisfying the exceptional case, and let P, G be as in the last lemma. Let G_0 be a finite subgroup of G of order p^n and let $K_0 \supset k$ be the field of elements of K left fixed by each automorphism of G_0 . If $t \in K_0$, $\sigma_0 \in G_0$, $\sigma \in G$, then $\sigma_0(\sigma(t)) = \sigma(\sigma_0(t)) = \sigma(t)$, so $\sigma(t) \in K_0$. Thus each $\sigma \in G$ induces an automorphism of K_0 . Furthermore K is a normal separable extension of K_0 of degree p^n . Consider Zeuthen's formula, $2g-2=p^n(2g_0-2)$ +d(D), where g_0 is the genus of K_0 and D the different of K with respect to K_0 . Let P_0 be the place of K_0 lying under P. If the place P' of K lies over P_0 and $P' \neq P$, then for any $\sigma_0 \subseteq G_0$ the place $\sigma_0(P')$ lies over P_0 and the various places $\sigma_0(P')$ (for σ_0 ranging over G_0) are distinct from each other and from P; this implies that at least (p^n+1) distinct places of K lie over P_0 , contradicting $[K:K_0] = p^n$. Hence P is the only place of K lying over P_0 . Next let P' be any place of K distinct from P. Then the various places $\sigma_0(P')$ (for σ_0 ranging over G_0) are distinct and in number p^n and all lie over the same place of K_0 ; it follows that each ramification index and each residue class field degree of each $\sigma_0(P')$ over K_0 is 1, so $P' \nmid D$. Hence we can write $D = P^r$, for some $r \ge 0$. If e and f are the ramification index and residue class field degree respectively for P over P_0 , then $ef = p^n$. If n > 0 then either $p \mid f$ (so k(P) is inseparable over $k(P_0)$) or $p \mid e$, and hence (by [2, p. 69]) $P^e \mid D$. Hence $D = P^r$, with $r \ge e$. Thus $2g - 2 - p^n(2g_0 - 2) = r d(P) \ge ef d(P_0) = p^n d(P_0)$. Hence $2g-2 \ge p^n(2g_0-2+d(P_0))$. Thus if n is sufficiently large we have $g_0 = 0$ and $d(P_0) \le 2$. Take n so large that this is true. Then if $d(P_0) = 2$ we must have p=2, and we can find a subgroup G_0' of G such that $G_0' \supset G_0$ and G'_0/G_0 has order 2. Let K'_0 be the subfield of K consisting of all elements left fixed by each $\sigma_0 \in G_0$. Then K_0 is separable over K_0 and $[K_0: K_0] = 2$. Let P_0' be the place of K_0' lying under P_0 . P_0 is the only place of K_0 lying over P_0' . Let e', f' be the ramification index and residue class field degree respectively for P_0 over P'_0 , and let D' be the different of K_0/K'_0 . By Zeuthen's formula, d(D') = 2. If e' = 2 then $P_0^2 \mid D'$, so $d(D') \ge 4$, which is false, so $e' \ne 2$. But e'f'=2, so we have e'=1, f'=2, so $d(P_0')=1$. As a result, if n is sufficiently large we certainly have $g_0 = 0$ and $d(P_0) = 1$. Here we can write $K_0 = k(x)$, where $v_{P_0}(x) = -1$.

Fix a subgroup G_0 of G of least possible order p^n such that the fixed field K_0 of G_0 is of the form $K_0 = k(x)$, where $v_{P_0}(x) = -1$, P_0 being the place of K_0 under P, and let $\sigma_1, \dots, \sigma_n$ be a set of generators for G_0 . For $i = 1, \dots, n$ let G_i be the subgroup of G_0 generated by $\sigma_1, \dots, \sigma_{i-1}, \sigma_{i+1}, \dots, \sigma_n$, and let K_i be the fixed field of G_i . K_i is a normal extension of k(x) of degree p and the restriction of σ_i to K_i generates the Galois group of K_i over k(x). Hence we can find a $y_i \in K_i$ such that $\sigma_i(y_i) = y_i + 1$, and we have $y_i^n - y_i = f_i(x) \in k(x)$. We wish to show that y_i can be chosen so as to give $f_i(x)$ a particularly simple

form. Any $\sigma \in G$ induces an automorphism of each field k(x), K_1 , \cdots , K_n , and since $\sigma(P_0) = P_0$ we have $\sigma(x) = \alpha x + \beta$, with α , $\beta \in k$. Since $\sigma^p = e$, $\alpha = 1$, so $\sigma(x) = x + \beta$. $\sigma(y_i) \in K_i$ and $\sigma_i(\sigma(y_i) - y_i) = \sigma(\sigma_i(y_i)) - \sigma_i(y_i) = \sigma(y_i) - y_i$, so $\sigma(y_i) - y_i = g(x) \in k(x)$. But $(\sigma(y_i))^p - \sigma(y_i) = f_i(\sigma(x))$, so $(g(x))^p - g(x) = f_i(x + \beta) - f_i(x)$. There are an infinity of σ 's so we can assume that σ is chosen so that P_0 is the only pole that $f_i(x)$ and $f_i(x + \beta)$ can have in common. Use partial fractions to write $g(x) = g_1(x) + g_2(x)$, where $g_1(x)$ has poles only at the poles of $f_i(x)$ and $g_2(x)$ has no pole in common with $f_i(x)$. Then $(g_1(x))^p - g_1(x) + f_i(x) = f_i(x + \beta) - (g_2(x))^p + g_2(x)$ has poles only at P_0 , that is $(g_1(x))^p - g_1(x) + f_i(x) \in k[x]$. If we set $z_i = y_i + g_1(x)$ we get $\sigma_i(z_i) = z_i + 1$ and $z_i^p - z_i \in k[x]$. Hence we may suppose y_i chosen so that $f_i(x) \in k[x]$.

We digress for a moment to prove the following contention: If u is an indeterminate and $\bar{k}(u, v)$ a field such that $v^p - v = f(u) \in \bar{k}[u]$, and if $\bar{k}(u, v)/\bar{k}$ has genus zero, then we can write $f(u) = (g(u))^p - g(u) + au + b$, where g(u) $\in \bar{k}[u]$ and $a, b \in \bar{k}$. First, if $v \in \bar{k}(u)$, then $v \in \bar{k}[u]$ and there is nothing to prove. So we may suppose that $[\bar{k}(u,v):\bar{k}(u)] = p$. Let $f(u) = cu^r + h(u)$, where $c \in \bar{k}$, $c \neq 0$, and where h(u) has degree less than r. r > 0. If $p \mid r$, say r = ps, then $(v-c^{1/p}u^{s})^{p}-(v-c^{1/p}u^{s})=h(u)+c^{1/p}u^{s}$, and it clearly suffices to prove our contention with f(u) replaced by $h(u) + c^{1/p}u^s$, a polynomial of smaller degree. Repeating this process, we get that it suffices to prove the following: If $v^p - v = cu^r + h(u)$, where $c \in \bar{k}$, $c \neq 0$, $h(u) \in \bar{k}[u]$ of degree $\langle r \rangle$, and r > 1is prime to p, then $\bar{k}(u,v)/\bar{k}$ has genus >0. To do this consider the differential du of $\bar{k}(u, v)$. For any $\eta \in \bar{k}$ there are p distinct places of $\bar{k}(u, v)$ lying over the place $(u = \eta)$ of $\bar{k}(u)$, so that $u - \eta$ is a uniformizing parameter at each of these places; hence du has order zero at each place of $\bar{k}(u, v)$ not lying over the place $(u = \infty)$ of $\bar{k}(u)$. But if P is a place of $\bar{k}(u, v)$ such that $P(u) = \infty$, then $pv_P(v) = rv_P(u)$, so $v_P(u) = -p$, $v_P(v) = -r$. Hence $v_P(du) = v_P(dv/(cru^{r-1} + h'(u)))$ =-r-1-(r-1)(-p)=(p-1)(r-1)-2. This is ≥ 0 unless p=2, r=2, which case is excluded by the condition $p \nmid r$. Hence du is a nonzero differential of the first kind of $\bar{k}(u, v)$. This proves our contention.

Returning to our discussion of K, fix some i $(i=1, \cdots, n)$ and suppose that $f_i(x)$ has degree N. Write $f_i(x) = F(x^{p^p})$ for some integer $v \ge 0$, where F is a polynomial. Setting $u = x^{p^p}$, $y_i^p - y_i = F(u)$. $\bar{k}K$ is rational, so by Lüroth's theorem so is $\bar{k}(u, y_i)$. By the above contention we can write $F(u) = (g(u))^p - g(u) + au + b$, where $g(u) \in \bar{k}[u]$ and $a, b \in \bar{k}$, and where we can assume g(0) = 0. Hence F'(u) = -g'(u) + a. F(u) has degree N/p^p so (assuming $g(u) \ne 0$) g(u) has degree N/p^{p+1} , and hence F'(u) has degree $\le N/p^{p+1} - 1$. Hence we can find a polynomial $H(u) \in k[u]$ of degree $\le N/p^{p+1}$ such that H'(u) = F'(u). Writing $z_i = y_i + H(u)$ we get $\sigma_i(z_i) = z_i + 1$ and $z_i^p - z_i = F(u) + (H(u))^p - H(u) = a$ polynomial in k[u] of degree $\le N/p^p$ with derivative zero. Hence $z_i^p - z_i = G(x^{p^{p+1}})$, where $G(x^{p^{p+1}})$ is a polynomial of degree $\le N$ with coefficients in k. Hence we could have assumed to begin with that $f_i(x)$

is a polynomial in $x^{p^{r+1}}$, and repeat this process, if possible, to replace $f_i(x)$ by another polynomial of degree $\leq N$ that is a polynomial in $x^{p^{\nu+2}}$, etc. This process must come to an end, so finally we get g(u) = 0. Then $y_i^p - y_i = ax^{p^p} + b$, with $a, b \in k$. If $\nu > 0$ and $a \in k^p$, then $(y_i - a^{1/p} x^{p^{\nu-1}})^p - (y_i - a^{1/p} x^{p^{\nu-1}})^p$ $=a^{1/p}x^{p^{\nu-1}}+b$, so if we choose ν minimal we have either $\nu=0$ or $a \in k^p$. But if $\nu = 0$, then $y_i^p - y_i = ax + b$, so K_i is a rational field with the place under P rational, contradicting the minimality of n. Hence we can assume that for $i=1, \dots, n$ we have $y_i^p - y_i = a_i x^{p^m} + b_i$, with $a_i, b_i \in k$, $a_i \in k^p$, and $m_i > 0$. The only automorphism of G_0 leaving each y_i fixed is e, so $K = k(x, y_1, \dots, y_n)$. For any $\sigma \in G$ we have $\sigma(x) = x + \beta$, $\beta \in k$. Setting $\alpha_i = \sigma(y_i) - y_i$, we get $\alpha_i^p - \alpha_i = a_i \beta^{p^m}i$, so $\alpha_i \in k$. Conversely suppose $\alpha_1, \dots, \alpha_n, \beta \in k$ and that $\alpha_i^p - \alpha_i = a_i \beta^{p^m}i$, $i = 1, \dots, n$. Let X, Y_1, \dots, Y_n be indeterminates. Then the prime ideal in k[X, Y] having (x, y_1, \dots, y_n) as generic zero is generated by the various polynomials $(Y_i^p - Y_i - a_i X_i^{pm_i} - b_i)$, so setting $\sigma(X) = X + \beta$. $\sigma(Y_i) = Y_i + \alpha_i$, $i = 1, \dots, n$, gives an automorphism of this ring carrying our prime ideal onto itself, and hence we get an automorphism σ of $k[x, y_1, \dots, y_n]$ (and hence of K) such that $\sigma(x) = x + \beta$, $\sigma(y_i) = y_i + \alpha_i$. We summarize as follows.

THEOREM. Let K/k satisfy the exceptional case. Then there exist $x \in K$ such that $[K:k(x)] = p^n$, where $p \neq 0$ is the characteristic of K, elements $y_1, \dots, y_n \in K$, $a_1, \dots, a_n, b_1, \dots, b_n \in k$, with $a_1, \dots, a_n \in k^p$, and strictly positive integers m_1, \dots, m_n such that $K = k(x, y_1, \dots, y_n)$ and $y_i^p - y_i = a_i x^{p^m} + b_i$, $i = 1, \dots, n$. For each set of elements β , $\alpha_1, \dots, \alpha_n \in k$ such that $\alpha_i^p - \alpha_i = a_i \beta^{p^m}$, $i = 1, \dots, n$, we have an automorphism σ of K/k defined by $\sigma(x) = x + \beta$, $\sigma(y_i) = y_i + \alpha_i$, $i = 1, \dots, n$, and the set of all such automorphisms σ forms the normal subgroup G of the full group of automorphisms G of K/k such that G/G is cyclic of finite order prime to p.

It is easy to establish a converse of this theorem: Let a_1, \dots, a_n , $b_1, \dots, b_n, m_1, \dots, m_n$ be as above and let K be the splitting field over k(x) of the polynomial $\prod_{i=1}^n (Y^p - Y - a_i x^{p^m} \cdot -b_i)$. By deleting some of the factors in the product if necessary, we can assume that $[K:k(x)] = p^n$. If we have an infinite number of sets $\beta, \alpha_1, \dots, \alpha_n \in k$ satisfying $\alpha_i^p - \alpha_i = a_i \beta^{p^m} \cdot, i = 1, \dots, n$, and if K has genus > 0, then K/k satisfies the exceptional case.

If K/k is exceptional, then its genus g cannot be arbitrary. First, since the genus drops to zero when we extend k to \bar{k} , by a result of Tate [6] g must be a multiple of (p-1)/2. Second, Zeuthen's formula $2g-2=-2p^n+rd(P)$ implies $2g-2\equiv 0$ (p). Thus g is of the form g=(sp-2)(p-1)/2, where s is an integer. For example, if K=k(x,y), where $y^p-y=ax^p$, $a\in k$, $a\in k^p$, then the curve in the projective plane whose generic point over k is (1, x, y) is immediately seen to be nonsingular with reference to k, so in this case g=(p-1)(p-2)/2. This last field K is clearly exceptional if p>2 and k is separably algebraically closed.

REFERENCES

- 1. P. Appell and E. Goursat, Théorie des fonctions algébriques et de leurs intégrales, Paris, 1895.
- 2. C. Chevalley, Introduction to the theory of algebraic functions of one variable, Mathematical Surveys, no. 6, 1951.
- 3. K. Iwasawa and T. Tamagawa, On the group of automorphisms of a function field, J. Math. Soc. Japan vol. 3 (1951) and vol. 4 (1952).
 - 4. M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. vol. 56 (1952).
- 5. H. L. Schmid, Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharacteristik, J. Reine Angew. Math. vol. 179 (1938).
- 6. J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. vol. 3 (1952).
 - 7. A. Weil, Variétés abéliennes et courbes algébriques, Paris, 1948.
- 8. O. Zariski, The concept of a simple point of an abstract algebraic variety, Trans. Amer. Math. Soc. vol. 62 (1947).

Northwestern University, Evanston, Ill.